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Quantum field theories underlie all of our understanding of the fundamental forces
of nature. There are relatively few first-principles approaches to the study of quan-
tum field theories (such as quantum chromodynamics [QCD] relevant to the strong
interaction) apart from the perturbative (i.e., weak-coupling) regime. Currently, the
most commonly used method is the Monte Carlo method on a hypercubic space–time
lattice. These methods consume enormous computing power for large lattices, and it
is essential that increasingly efficient algorithms be developed to perform standard
tasks in these lattice calculations. Here we present a general algorithm for QCD that
allows one to put any planar improved gluonic lattice action onto a parallel comput-
ing architecture. High performance masks for specific actions (including nonplanar
actions) are also presented. These algorithms have been successfully employed by
us in a variety of lattice QCD calculations using improved lattice actions on a 128
node Thinking Machines CM-5. c© 2001 Academic Press
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I. INTRODUCTION

It is almost universally accepted that quantum chromodynamics (QCD) is the underlying
quantum field theory of the strong interaction [1, 2] that binds atomic nuclei and fuels the
sun and the stars. Strongly interacting particles are referred to as hadrons, which include,
for example, protons and neutrons that make up atomic nuclei as well as a wide variety of
particles produced in particle accelerators and from astrophysical sources. These hadrons
are made up of quarks and gluons, which are the underlying constituents in QCD. The
quarks are spin-1/2 particles (i.e., fermions) and the gluons are massless spin-1 particles
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(i.e., gauge bosons). The quarks interact strongly through their “color” charge through
the exchange of gluons. The eight gluons of SU(3) (i.e., one for each generator of SU(3)
themselves carry color and hence interact with themselves and with the quarks. This is the
essential difference between QCD and the corresponding theory of photons and electrons
referred to as quantum electrodynamics (QED) and has far reaching consequences because
the theories have entirely different behavior.

The are very few first-principles methods for studying QCD in the nonperturbative low-
energy regime. The most widely used of these is the so-called Lagrangian-based lattice field
theory, which formulates the field theory on a space–time lattice [3, 4]. An alternative lattice
approach is based on the Hamiltonian formulation of quantum field theory and makes use
of cluster decompositions, and again Monte Carlo methods to carry out the simulations [5].
In addition, there are numerous studies based on a light-front formulation of QCD [6] and
much use has been made of Schwinger–Dyson equations [7] to assist with the construction
of QCD-based quark models.

The Lagrangian-based lattice technique simulates the functional integral using a four-
dimensional hypercubic Euclidean spacetime lattice together with Monte Carlo methods
for generating an ensemble of gluon field configurations with the appropriate Boltzmann
distribution exp(−SG), whereSG is a discretized form of the QCD gluon action on the
hypercubic lattice. The simplest discretizations of the QCD action involve only nearest
neighbors on the lattice and haveO(a2) errors, wherea is the lattice spacing. Improved
actions represent a major advance for the field of lattice gauge theory, where by using
increasingly nonlocal discretizations of the QCD action, we can obtain the same accuracy
with far fewer lattice points and hence far less computational time and effort.

The purpose of the present work is to describe an algorithm which allows us to implement
an arbitrarily improved (i.e., arbitrarily nonlocal) action in an efficient way. For further
details on the state of the art lattice QCD techniques, see for example Ref. [8]. Another
related and equally important advance is the technique of nonperturbative improvement
(e.g., mean-field improvement) which corrects for some of the major nonperturbative
effects (the so-called tadpole contributions) and hence more quickly brings the lattice
results to their continuum form by improving the matching with perturbation theory at a
given lattice spacinga [9]. It is the combination of improved actions and nonperturbative
improvement that together have come to represent a significant advance for the field
[8, 10].

Lattice QCD is based on a Monte Carlo treatment of the path integral formulation, which
makes it a computationally demanding method for calculating physical observables. The
gluon field is represented by 3× 3 complexSU(3)matrices, where there is one suchSU(3)
matrix associated with every link on the lattice. The links lie only along one of the four
Cartesian directions and join neighboring lattice sites. Since all lattice links require identical
numerical calculations, lattice gauge theory is ideally suited for parallel computers.

There are various types of improved actions and, as explained above, these are all based
on the idea of eliminating the discretization errors that occur when passing from continuum
physics to the discretized lattice version. The simplest (i.e., nonimproved) gluon action is
the standard Wilsonaction and consists of 1× 1 Wilson loops or, as they are frequently
called,plaquettes. (We shall often refer to the Wilson loops used to build up lattice actions
as plaquettes.) The need to build the gluon action out of closed loops arises from the need to
maintain exactSU(3) gauge invariance in the discrete lattice action. This 1× 1 loop action
was first proposed by Wilson [11] in the early 1970s and has been used extensively over the
years. It consists of taking an arbitrary starting site, sayx, on the lattice and stepping around
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FIG. 1. The 1× 1 plaquetteUsq(x) with base atx lying in theµν-plane. The lattice spacing is denoted bya.

a 1× 1 loop until returning to the starting pointx. The 1× 1 Wilson loop is illustrated in
Fig. 1.

Improving the standard Wilson action is achieved by making use of larger loops (e.g.,
1× 2, 2× 2, etc.) in the lattice gluon action [12] to eliminate finite lattice spacing artifacts
to a given order ina2. For an elegant and detailed discussion of these topics see Ref. [10].

In this article we present an efficient and completely general algorithm that permits one
to calculate any improved planar lattice action at any desired level of improvement. By
“planar” here we mean that we will consider actions containing two-dimensional loops of
arbitrary size which lie in any of the Cartesian planes, (i.e., thex–y, x–z, x–t , y–z, y–t ,
or z–t plane). This algorithm has been used in a wide variety of improved action lattice
simulations to date [8]. For example, it has been used in studies of the topological structure
of the QCD vacuum and the calibration of the various cooling and smearing techniques [13],
the study of discretization errors in the Landau gauge on the lattice [14], and studies of the
static quark potential [15]. It is currently being used in studies of the gluon propagator [16]
and highly improved actions [17].

In Section II, we briefly describe the tree-level improved action that we have been using
in our calculations [13–17] with our algorithm on a Thinking Machines CM-5. Section III
gives two possible ways of using the technique for the standard Wilson action. The form of
the algorithm appropriate for the first level of improvement (i.e., involving a combination
of the elementary square 1× 1 plaquette and the rectangular 1× 2 plaquette) is given in
Section IV. Then in Section V we present the general algorithm suitable for an arbitrarily
nonlocal action, (i.e., for ann×m Wilson loop with n and m being arbitrary positive
integers). Section VI addresses nonplanar issues encountered in nesting specific planar
actions. Actions involving nonplanar loops are also addressed. Finally, in Section VII we
present our summary and conclusions.

II. GAUGE ACTION, MASKING, AND PARALLEL COMPUTING

A. Lattice Gauge Action for Color SU(3)

The standard Wilson action for the gluons is given by

SW
G = β

∑
sq

[
1− 1

3
Re Tr Usq(x)

]
(1)



4 BONNET, LEINWEBER, AND WILLIAMS

and a simple tree-levelO(a2)-improved action (i.e., the action with the first level improve-
ment) is defined as

SG = 5β

3

∑
sq

ReTr(1−Usq(x))− β

12u2
0

∑
rect

Re Tr (1−Urect(x)). (2)

The 1× 1 square (or plaquette)Usq(x) and the 1× 2 rectangleUrect(x) are defined by

Usq(x) = Uµ(x)Uν(x + µ̂)U †µ(x + ν̂)U †ν (x) (3)

Urect(x) = Uµ(x)Uν(x + µ̂)Uν(x + ν̂ + µ̂)U †µ(x + 2ν̂)U †ν (x + ν̂)U †ν (x)
+Uµ(x)Uµ(x + µ̂)Uν(x + 2µ̂)U †µ(x + µ̂+ ν̂)U †µ(x + ν̂)U †ν (x). (4)

Here the variablesµ and ν are the direction in which the links are pointing inside the
lattice space. There are four directions for a four-dimensional hypercubic lattice. The link
productUrect(x)denotes the rectangular 1× 2 plaquettes, andu0 is the tadpole improvement
factor, commonly known as the mean-field improvement factor which largely corrects for
quantum renormalization of the links. In our numerical studies we have typically employed
the plaquette definition of the mean-field improvement factor

u0 =
(

1

3
Re Tr〈Usq〉

)1
4

. (5)

For the improved action in Eq. (2) the residual perturbative corrections after mean-field
improvement are estimated to be of the order of two to three percent [18]. Of course, both
Eqs. (1) and (2) reproduce the continuum gluon action asa→ 0, whereβ ≡ 6/g2 andg
is the QCD coupling constant at the scalea. It is useful to note that ourβ = 6/g2 differs
from the convention of Refs. [18–20]. A multiplication of ourβ in Eq. (2) by a factor of
5/3 reproduces their definition.

Let us comment on the lattice configurations that we have generated with the general
algorithm described here and that we have used extensively in Refs. [13–17]. The gauge
configurations are generated using the Cabbibo–Marinari [21] pseudo-heat–bath algorithm
with three diagonalSUc(2) subgroups. All calculations are performed using a highly parallel
code written in CM-Fortran and run on a Thinking Machines Corporations (TMC) CM-5
with appropriate link partitioning. For the standard Wilson action, we partition the link
variable in a checkerboard fashion. While all calculations to date have been forSU(3),
there is no restriction in the algorithm on the number of colors for the gauge group [21] and
we could just as easily have treated the case ofSU(N).

The mean-field improvement factor was updated on a regular basis during the simulation.
Once the lattice is thermalized from a cold start (after at least five thousand sweeps), theu0

factor is held fixed during the generation of the ensemble of gauge field configurations. The
ensemble is built up by sampling the fields with a separation of at least 500 Monte Carlo
sweeps over the entire lattice to ensure that they are sufficiently decorrelated. For the case
of the standard Wilson action, configurations have been generated on a 163× 32 lattice at
β = 5.70 and a 243× 36 lattice atβ = 6.00. For the improved action of Eq. (2), we have
generated 83× 16, 123× 24, 163× 32, and 243× 36 lattices withβ values of 3.57, 4.10,
4.38, and 5.00, respectively.
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B. Masking and Parallel Computing

When performing a Monte Carlo sweep of the entire lattice, each lattice link must be
updated individually using the particular gluon action of interest (e.g.,SG). The action is
used in the Monte Carlo accept/reject step for that link in order that detailed balance is
ensured at each link update and hence that it is ensured throughout the entire lattice sweep.
It is the combination of randomness in the link updates, the maintenance of detailed balance,
and decorrelation (ensured by large sweep numbers between the taking of samples) that
ensures the desired ensemble of gauge field configurations are produced with the Boltzmann
distribution exp(−SG).

In the most naive procedure we move through each link on the lattice consecutively
updating them one at a time until we have completed a “sweep” through the entire lattice.
We then repeat these lattice sweeps as often as required. This simple procedure is highly
inefficient on a parallel computing architecture, where we can be updating many links at
the same time. However, there is a fundamental limitation to this parallelism, i.e., we will
violate detailed balance and corrupt our data if we try to simultaneously update a link while
information about that link is being used in the update of another link. It is crucial that we
identify which links can be updated simultaneously; this is determined by the degree of
nonlocality in the action. For example, for an action which contains only nearest neighbor
interactions of the links, such as the Wilson action, we can use an efficient “checkerboard”
algorithm, which will be described below. In general, the more nonlocal the lattice gluon
action, the fewer the links that can be simultaneously updated. We see that the improvement
program is therefore more expensive to implement, but the benefit of improved actions far
outweighs this drawback.

In order to facilitate our discussions we will refer to the concept of “masking,” where the
lattice links not eliminated by the mask are the ones that can be simultaneously updated in a
parallel computing environment. The number of independent masks needed for a particular
action determines an upper limit to the parallelism that can be used in a single lattice sweep.
As we will see, the best that can be done is to have two masks per link direction, and this
is for the case of nearest neighbor interactions only.

We will simplify the presentation in the usual way by rescaling all dimensionful quantities
by the lattice spacinga. This is equivalent to settinga = 1.

III. MASKING FOR THE STANDARD WILSON ACTION

In the standard Wilson action, where only neighboring links are connected by the action,
we need only two masks for each of the four link directions. There are two different ways
of implementing this masking, as we will now discuss.

A. Checkerboard Masking

The standard Wilson action only involves 1× 1 Wilson loops (depicted in Fig. 1) and is
the most fundamental lattice gluonic action. Whenever a given link is being updated, we
must not be attempting to update any of the links within any of the 1× 1 plaquettes which
contains the given link. Consider the link from the lattice sitex to x + µ, whereµ is one of
the four Cartesian unit vectorsx̂, ŷ, ẑ, or t̂ . We see then that the plaquette in Fig. 1 forms a
“staple” consisting of three links in theµ–ν plane which is attached to the link of interest
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FIG. 2. Checkerboard masking as seen in anx̂–ŷ plane of the lattice when using the standard Wilson action.
The highlighted links with arrows can be updated simultaneously.

Uµ(x). (Note that we are sometimes usingx as a shorthand notation for the space–time
lattice pointxµ ≡ (x, y, z, t) as well as for thex-coordinate on thêx axis. The meaning
should be clear from the context.) We could equally well consider the plaquette and staple
below the linkUµ(x) in the figure, which also lies in theµ–ν plane. In addition, for a given
Cartesian directionµ, there are three possible choices forν, i.e., there are three orthogonal
planes which contain the link and two staples per plane.

Let us consider, for example, all of the links in thex̂–ŷ plane which are oriented in thêx
direction. We can see from Fig. 2 that we can choose a “checkerboard” of such links that can
be updated at the same time without interfering with each other. These links are indicated
in the figure as highlighted links with arrows. It is easy to see that none of the links to be
updated lie in any of the staples for the other links to be updated and that exactly half of the
x̂-oriented links in this plane can be simultaneously updated at one time.

We have identified one of the lattice sites in Fig. 2 as the sitex. If the link variableUx̂(x)
is to updated then from Fig. 2, it is observed that the link variables in thex̂ direction that
can be simultaneously updated areUx̂(x + 2x̂), Ux̂(x + 4x̂) and so on. So every second
link along thex̂ direction can be updated at the same time. Now let us consider stepping in
the ŷ direction. We again see that every second link in that direction can be simultaneously
updated. By symmetry the same must also be true for theẑ andt̂ directions as depicted in
Fig. 3, where we have used a broken dash–dot line to try to indicate the fourth dimension
(i.e., for the links that lie in thêx–t̂ plane). We see that for the link pointing in thex̂
direction, the plaquettes (and staples) in thex̂–ŷ, x̂–ẑ, x̂–t̂ planes are all related by simple
rotations about the link. Thus we see that we have now built up a four-dimensional mask
for determining which links pointing in thêx direction can be simultaneously updated.

Let us introduce some convenient shorthand notation. If for a given link pointing in the
directionµ, we must taken steps in the directionν before reaching the next updatable
link pointing in the directionµ, we will use the notationµ: ν ∼ nν. For our checkerboard
masking we see that for a link pointing in the directionx̂ we have to take two steps in each
of the Cartesian directions before reaching the next updatable link. Hence we write

x̂: x̂ ∼ 2x̂, ŷ ∼ 2ŷ, ẑ∼ 2ẑ, and t̂ ∼ 2t̂ . (6)
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FIG. 3. Rotating the 1× 1 plaquette sitting in thêx–ŷ plane about thêx-axis into thex̂–ẑ andx̂–t̂ planes.

We immediately see that this is also true for links oriented in theŷ, ẑ, andt̂ directions so
that

ŷ : x̂ ∼ 2x̂, ŷ ∼ 2ŷ, ẑ∼ 2ẑ, and t̂ ∼ 2t̂, (7)

ẑ: x̂ ∼ 2x̂, ŷ ∼ 2ŷ, ẑ∼ 2ẑ, and t̂ ∼ 2t̂, (8)

t̂ : x̂ ∼ 2x̂, ŷ ∼ 2ŷ, ẑ∼ 2ẑ, and t̂ ∼ 2t̂ . (9)

Finally, note that when we wish to update all of the links pointing in any one of the four
Cartesian directions, sayµ, we need only two four-dimensional masks. This is because
exactly half of theµ-oriented links across the entire lattice are considered in each four-
dimensional mask. To appreciate this we simply note that for any one of the Cartesian
directions one mask can be turned into the checkerboard complement mask for that direction
by shifting the mask by one step in any Cartesian direction (see Fig. 2). So to update all
of the links on the lattice we need a total of eight four-dimensional masks, i.e., two masks
for each of the four Cartesian directions. In other words, no matter how many nodes we
have available on our parallel computing architecture, a full lattice updating sweep will
require eight serial masked sweeps to complete with a nearest neighbor action (such as
the Wilson action) and checkerboard masking. This is the conventional procedure for the
standard Wilson action in lattice QCD studies. In closing this section on the standard Wilson
action, let us observe in Section III B that there is an alternative and equally good “linear”
masking for this case.

B. Linear Masking

As an alternative approach to the checker board masking described in Section III A, one
could partition the links over the lattice in a linear fashion as shown in Fig. 4. If the link
variable of interest isUx̂(x) then the next possible link variable in thex̂ direction which can
be updated is theUx̂(x + x̂) link, then theUx̂(x + 2x̂), and so on. We see that all the links
on thex̂ line can be updated at the same time, since none of these links are contained in
the 1× 1 plaquettes for the other links in the line. Hence we havex̂: x̂ ∼ 1x̂. Now looking
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FIG. 4. Linear masking of the lattice when using standard Wilson action. The highlighted arrows represents
the link variable that can be updated simultaneously.

in the ŷ direction, we realize that we cannot touch theUx̂(x + ŷ) link because it is part of
the Wilson loop containing the link variableUx̂(x) which is being updated simultaneously.
However, the linksUx̂(x + 2ŷ), Ux̂(x + 4ŷ), and so on can be updated. Consequently, we
havex̂: ŷ ∼ 2ŷ and similarly for steps in thêz andt̂ directions. For a link variable pointing
in the x̂ direction, we then have

x̂: x̂ ∼ 1x̂, ŷ ∼ 2ŷ, ẑ∼ 2ẑ, and t̂ ∼ 2t̂ . (10)

When the links to be updated are pointing in the other three directions we have

ŷ : x̂ ∼ 2x̂, ŷ ∼ 1ŷ, ẑ∼ 2ẑ, and t̂ ∼ 2t̂, (11)

ẑ: x̂ ∼ 2x̂, ŷ ∼ 2ŷ, ẑ∼ 1ẑ, and t̂ ∼ 2t̂, (12)

t̂ : x̂ ∼ 2x̂, ŷ ∼ 2ŷ, ẑ∼ 2ẑ, and t̂ ∼ 1t̂, (13)

for the ŷ, ẑ, andt̂ directions, respectively.
Again, we see that there are two complementary linear masks for links pointing in any

given Cartesian directionµ. One mask can be obtained from the other by a shift of one step
in any of the three Cartesian directions orthogonal toµ as can be appreciated from Fig. 4.
Thus this linear masking is equally as efficient as the checkerboard masking of the previous
section, since there are two masks for each of the four Cartesian directions giving a total of
eight masks.

IV. MASKING AN IMPROVED ACTION

In this section, we describe the necessary masking procedure for a first-level improved
action involving 1× 1 and 1× 2 Wilson loops. In particular, in this section we are describ-
ing the masking suitable for the improved gauge action of Eq. (2), which has been used
extensively by us [13–17]. Let us again begin by considering the link variable beginning
at some lattice sitex and pointing in thêx direction, i.e.,Ux̂(x). We now need to consider
both Fig. 3 for the elementary 1× 1 square plaquette and Fig. 5 for the 1× 2 rectangular



ALGORITHM FOR IMPROVED LATTICE ACTIONS 9

FIG. 5. The set of all possible 1× 2 plaquettes containing the linkUx̂(x). The dashed-dotted line is to be
understood as being in thex̂–t̂ plane.

plaquette. In Fig. 5 we show all of the 1× 2 rectangular plaquettes which contain the link
Ux̂(x), which is shown as the highlighted horizontal link in the three parts of this figure.
Visualizing a four-dimensional object on a flat piece of paper can be, to a certain extent, an
artistic challenge, and so we have again used a dash–dot line to indicate links lying in the
x̂–t̂ plane. There are three distinguishable ways to include this link in a 1× 2 plaquette (the
three parts of the figure) and for each of these there are two (mirror-image) rectangles per
Cartesian plane and four Cartesian planes. All links in Figs. 3 and 5 and with arrows (other
than the linkUx̂(x) itself) must be omitted from the mask when updating this link with our
improved action. We see that there are many excluded links.

In Fig. 6 we show which links can be simultaneously updated with the linkUx̂(x). We
can immediately write down by inspection from this figure that

x̂: x̂ ∼ 2x̂, ŷ ∼ 3ŷ, ẑ∼ 3ẑ, and t̂ ∼ 3t̂ . (14)

This follows since thêz and t̂ cases are identical to thêy case for thiŝx-oriented link.
The generalization to the other orientations of the links to be updated is straightforward by

FIG. 6. The highlighted links with arrows are the ones that can be simultaneously updated for an action
containing both 1× 1 and 1× 2 plaquettes.
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symmetry:

ŷ : x̂ ∼ 3x̂, ŷ ∼ 2ŷ, ẑ∼ 3ẑ, and t̂ ∼ 3t̂, (15)

ẑ: x̂ ∼ 3x̂, ŷ ∼ 3ŷ, ẑ∼ 2ẑ, and t̂ ∼ 3t̂, (16)

t̂ : x̂ ∼ 3x̂, ŷ ∼ 3ŷ, ẑ∼ 3ẑ, and t̂ ∼ 2t̂ . (17)

Let us return to the particular case of the masking forx̂-oriented links. From Eq. (14) we
see that there is symmetry between theŷ, ẑ, andt̂ directions, and so we will begin by con-
structing suitable masks for any given equal-x hyper-plane, i.e., for the three-dimensional
space spanned by the unit vectorsŷ, ẑ, andt̂ .

Before attempting this, let us first consider Fig. 6 and extend this to three dimensions
by imagining that thêz-axis is pointing directly out from the page. We shall temporarily
neglect thêt direction, which is equivalent to simply taking a slice of the four-dimensional
lattice with the same value oft , (i.e., an equal-t hyper-plane). Now let us view this three-
dimensional lattice by looking along thêx-axis at one particular equal-x plane. We will
then be presented with end-views of updatable links in theŷ–ẑ plane. For every fixed value
of z there are three different masks needed fory and vice versa. Also, there is no restriction
on simultaneously updatingdiagonallyshifted links, since we are only considering planar
actions at this point. It is not difficult to see that we can cover all of the nine lattice links that
need to be updated with three orthogonal masks as shown in Fig. 7. In this figure,x-oriented
links which can be updated at the same time are indicated by a solid dot. Note that each of
these masks is related by a diagonal shift of the nine-point lattice “window.”

We can now also extend this thinking to include thet direction, by stacking the three
two-dimensionaly–z masks on top of each other as shown in Fig. 8. We must stack the
planes so that when viewed along any of the three axes the solid dots in any one Cartesian
plane always have the appearance of one of the planes in Fig. 7. We see that this can be
achieved in three ways by the stacking in Fig. 8 and its two cyclic permutations. These three
three-dimensional masks when summed give the identity (i.e., the sum includes all points)
and are orthogonal to each other (i.e., the sum includes all points only once).

We can now give a simple geometrical picture of what we are doing, which will simplify
the generalization that we give in the next section. Forx̂-oriented links, the directionŝy, ẑ,
andt̂ directions are all symmetrical and each direction requires a step of 3 to reach the next

FIG. 7. Schematic illustration of the lattice masking when using the 1× 2 plaquette improved action.
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FIG. 8. Illustration of the cyclic plane rotation in the improved masking.

updatable link. Hence, we need to construct a complete set of orthogonal masks in three
dimensions for a 3× 3× 3 cube, where no two points in the cube lie on the same Cartesian
axis (i.e., only diagonally related points). This is simple to do. Let us consider the bottom
plane (i.e., plane 1) of Fig. 8 and connect the three solid dots by a diagonal line. We see that
plane 2 is obtained from plane 1 by a diagonal shift of this line by one diagonal half-step,
and similarly for plane 3. In visualizing this it may help to imagine surrounding the cube
by many identical copies of itself and moving the diagonal line through diagonal half-steps
across all of these cubes simultaneously. All three three-dimensional masks are obtained in
the same way but start with plane 1, plane 2, and plane 3, respectively.

So for thex̂-oriented links we need three masks for each equal-x hyper-plane (i.e., a three-
volume here), and we have two independent equal-x hyper-planes, giving a total of six masks
for each Cartesian direction for the link orientation. Since there are four orientations, then
a total of 24 masks are needed for an action containing both 1× 1 and 1× 2 plaquettes.
Thus a single lattice sweep must take at least 24 sequential serial calculations, even on the
most parallel computing architecture.

The masking procedure outlined here for this action can only be implemented when the
number of lattice points in each dimension is a multiple of 3. Inspection of Fig. 8 reveals
the periodicity of three is required to maintain separation of links at the boundary. Since
simulations are usually carried out on lattices with even numbered sides, this restricts the
length of the lattice sides to multiples of 6. Fortunately, multiples of 4 are easily obtained
as described in the next section. Moreover, Section VI reports a high-performance mask for
this action with a periodicity of 4.

It is interesting to note that when implementing this masking procedure on the CM-5 we
achieved optimum performance by calculating the updates for all links on the lattice and by
then only implementing those updates that were appropriate for the particular mask being
used at the time. In other words, for the lattices that we have studied so far on the CM-5,
it was more efficient to calculate link updates that were never used, than it was to split the
masked links over the various processor nodes and update only these masked links. This
was due to the fact that there was a large overhead of communication time in assigning the
masked links across the processors. The point of this observation is that the optimal use of
the masks will in general depend on the details of the parallel computing architecture being
used.



12 BONNET, LEINWEBER, AND WILLIAMS

V. MASKING THE LATTICE WHEN USING A GENERALIZED IMPROVED ACTION

We can now generalize the algorithm presented in Section IV for arbitrarily improved
planar actions. Let us begin as before by considering the update of links oriented in thex̂
direction. Let us assume that we have an action withn×m links where then refers to the
x̂ direction and them refers to thêy, ẑ, andt̂ directions. We will eventually argue that only
thenmax× nmax case, wherenmax is the greater ofn andm, is necessary in the general case.
As shown in Fig. 9, the nearest simultaneously updatable links are separated byn steps in
the x̂ direction and(m+ 1) steps in the other three Cartesian directions.

Hence we see that we can write in our notation for the four Cartesian orientations of the
links that

x̂ : x̂ ∼ nx̂, ŷ ∼ (m+ 1)ŷ, ẑ∼ (m+ 1)ẑ, and t̂ ∼ (m+ 1)t̂, (18)

ŷ : x̂ ∼ (m+ 1)x̂, ŷ ∼ nŷ, ẑ∼ (m+ 1)ẑ, and t̂ ∼ (m+ 1)t̂, (19)

ẑ: x̂ ∼ (m+ 1)x̂, ŷ ∼ (m+ 1)ŷ, ẑ∼ nẑ, and t̂ ∼ (m+ 1)t̂, (20)

t̂ : x̂ ∼ (m+ 1)x̂, ŷ ∼ (m+ 1)ŷ, ẑ∼ (m+ 1)ẑ, and t̂ ∼ nt̂ . (21)

We can now follow the arguments of the previous section. Let us consider a fixed-x
hyper-plane (i.e., three-volume). In place of a 3× 3 three-volume we will now need an
(m+ 1)× (m+ 1)× (m+ 1) three-volume. Furthermore, we will need a complete set
of orthogonal and diagonal masks for this. Let us again look along thex̂ direction at a
fixed t plane for now, i.e., we are looking at aŷ–ẑ plane as in Fig. 10. Let us refer to the
(m+ 1)× (m+ 1) two-dimensional plane with the updatable links (solid dots) along the
diagonal as plane 1. Then we can generate the otherm two-dimensional planes by diagonal
half-shifts as before as depicted in Figs. 11 and 12. We can then sequentially stack these
planes in thêt direction as before to form the first of the three-dimensional masks. The

FIG. 9. The highlighted links with arrows are the ones that can be simultaneously updated for an action
containing up ton×m plaquettes, where heren refers to thêx direction andm applies to the other three Cartesian
directions.
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FIG. 10. Plane 1 with the(m+ 1) updatable sites on the main diagonal of theŷ–ẑ plane.

other m three-dimensional masks are then generated from this first mask by the cyclic
permutations of them+ 1 planes as in Section IV. Hence we have generated the desired
complete set of(m+ 1) orthogonal three-dimensional diagonal masks.

So for each fixedx-hyper-plane (i.e., three volume) we need(m+ 1) masks. We will
need such a set of masks for then values ofx. The general result is that for updating
the links oriented in thêx direction we need a total ofn× (m+ 1) masks, and we have
seen that the construction of these masks is straightforward. The construction of the masks
for the other Cartesian orientations of the links proceeds identically. This total number of
masks isnmask= 4× n× (m+ 1). The periodicity of the mask is governed by the last
factor,(m+ 1), and the lengths of the lattice dimensions must be a multiple of this number.
The reason is that if this were not the case, then the imposition of the necessary periodic
boundary conditions would cause link collisions, where a link being updated uses one or
more other links which are simultaneously being updated.

Any improved lattice action of physical interest must be bothZ4-symmetric (i.e., sym-
metric under the arbitrary interchange of the four Cartesian directions) and translationally
invariant. Thus for such actions, every link will find itself occurring in every possible po-
sition for every plaquette in the improved action. We then see, as we did in Section IV
and Fig. 5, that the number of steps needed in each direction is determined by the longest
plaquette side appearing in the action. Let us denote the longest plaquette side appearing
in the action asnmax. Then we see that the number of steps needed in the various Cartesian

FIG. 11. Plane 2.



14 BONNET, LEINWEBER, AND WILLIAMS

FIG. 12. Plane 3.

directions is given by

x̂: x̂ ∼ nmaxx̂, ŷ ∼ (nmax+ 1)ŷ, ẑ∼ (nmax+ 1)ẑ, and t̂ ∼ (nmax+ 1)t̂, (22)

ŷ: x̂ ∼ (nmax+ 1)x̂, ŷ ∼ nmaxŷ, ẑ∼ (nmax+ 1)ẑ, and t̂ ∼ (nmax+ 1)t̂, (23)

ẑ: x̂ ∼ (nmax+ 1)x̂, ŷ ∼ (nmax+ 1)ŷ, ẑ∼ nmaxẑ, and t̂ ∼ (nmax+ 1)t̂, (24)

t̂ : x̂ ∼ (nmax+ 1)x̂, ŷ ∼ (nmax+ 1)ŷ, ẑ∼ (nmax+ 1)ẑ, and t̂ ∼ nmaxt̂ . (25)

Hence the number of masks in general for an improved action will then be given by

nmask= 4× nmax× (nmax+ 1), (26)

and the lattice will need the length in each dimension to be an integral multiple of(nmax+ 1).
It is useful to note that thelinear masking for the standard Wilson action is the one

that is extended initially in Section IV and is subsequently generalized in this section.
For the standard Wilson action (i.e., 1× 1 plaquettes only), we see thatnmax= 1 and
hencenmask= 4× 1× 2= 8 as we found for the linear (and checkerboard) mask. For the
improved action that we have studied (i.e., 1× 1 and 1× 2 plaquettes) we havenmax= 2
and hencenmask= 4× 2× 3= 24 or 6 masks per link direction as found in Section IV.
However, this way of proceeding for the plaquette plus rectangle improved action would
require each lattice dimension be a multiple of(nmax+ 1) = 3. But since we also typically
want our lattices to have even lengths, then each side of the lattice must be a multiple
of 6 in length. Since the result in Eq. (26) is a lower bound, we can of course always
choose to enlarge the period of our masking by choosingnmax+ 2 for the last factor in
Eq. 26 rather thannmax+ 1. This will still ensure that no link collisions occur. For example,
for the plaquette plus rectangle improved action, we can use(nmax+ 2) = 4 instead of
(nmax+ 1) = 3 in Eq. (26), so that any lattice lengths which are multiples of 4 become
available at the cost of requiring 32 masks rather than 24. Fortunately, for this case a more
efficient mask can be realized and will be presented in the next section.

VI. NONPLANAR CONSIDERATIONS

We have presented a method for identifying links which may be simultaneously updated
during Monte Carlo updates or cooling sweeps. The generality of the algorithm allows one
to parallelize link updates for planar actions of any degree of nonlocality. In this section we
extend this analysis to a few special cases of actions in which out-of-plane considerations
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FIG. 13. Two elementary cells for an action involving 1× 1 and 1× 2 Wilson loops are nested together such
that one need not restrict the mask to every second link in the direction of the links being updated. The links with
the positions labeled are the ones that can be simultaneously updated. The out of plane plaquette-plus-rectangle
illustrates additional links that cannot be simultaneously updated.

are necessary. Both cases are centered around the plaquette plus rectangle action of Eq. (2)
in which 1× 1 and 1× 2 Wilson loops are considered in the action. Such actions dominate
current improved gauge action analyses.

In Section IV we illustrated how such an action can be masked through the consideration
of an elementary 3× 3× 3 cube in which one-third of the links may be simultaneously
updated. However, only every second link in the direction of the links is updated simulta-
neously, as illustrated in Fig. 6. Hence six masks per link direction are required.

Here we consider an alternative masking specialized to the 1× 1 and 1× 2 Wilson loop
actions. Figure 13 illustrates the manner in which these Wilson loops may be nested, such
that one need not restrict the mask to every second link in the direction of the links being
updated. This technique will reduce the number of masks by a factor of two, at the expense
of considering an elementary 4× 4× 4 cube in which one-quarter of the links may be
simultaneously updated. Figure 14 displays the four planes to be cycled through in which
the links to be updated simultaneously are indicated by the solid dot. Hence only four masks
per link direction are required. Moreover, the lattice dimensions (usually even numbers)
can now be multiples of 4 as opposed to 6.

The out-of-plane considerations required for the nested action are also indicated in Fig. 13.
Hence it becomes apparent that not only must the three links at(x, y+ 1), (x, y+ 2), and
(x, y+ 3) be avoided, but also the links two-steps in a direction orthogonal to the link
direction and one step in a third direction (similar to moves of a Knight on a chess board)
must be avoided.

Inspection of the four planes to be cycled through in the elementary 4× 4× 4 cube dis-
played in Fig. 14 indicates that such Knight moves are already avoided in this mask. How-
ever, it also becomes clear that the ordering of the planes is crucial. For example, interchang-
ing the positions of planes 2 and 3 would cause “link collisions” within the nested mask.

Finally, we consider nonplanar actions in which one step out of the plane of the 1× 1 and
1× 2 Wilson loops is required. Such nonplanar paths are introduced to eliminate small but
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FIG. 14. The four planes to be cycled through in the elementary 4× 4× 4 cube. One-quarter of the links
may be updated simultaneously and are indicated by the solid dot. The circled sites are an example of the sites
surviving when the out of plane “chair” or “parallelogram” link paths are included in the action.

finiteO(g2a2) errors, whereg is the gauge coupling constant. The six-link paths commonly
referred to as the “chair” and “parallelogram” [18] introduce a link parallel to that being
updated which is one-step orthogonal to the link direction and one step in a third direction.

Inspection of Fig. 14 indicates that such 1 by 1 moves eliminates fully two of the four
planes and half of the parallel sites on each surviving plane. An example of four of the sites
which may still be updated in parallel are indicated by the circled sites in Fig. 14. As a result
there are now 16 masks required per link direction instead of 4. Now a total of 64 masks is
required for this action, which is still regarded as rather local.

The introduction of even the most local nonplanar paths can have a serious detrimental
effect on the level of parallelism that is possible. It is easy to see that one can rapidly
eliminate all sites in an elementaryn× n× n cube with nonplanar loops, leading ton3

masks per link direction.

VII. SUMMARY AND CONCLUSION

We have briefly described the concept of improved actions and have explained the impli-
cations of the nonlocality arising from the improvement program for the implementation of
these actions on parallel computing architectures. We have characterized these implications
in terms of the number of masks, which in turn determine the minimum number of serial
calculations needed to perform a Monte Carlo updating sweep over all of the gluon links
on the lattice. We have systematically built up a completely general algorithm using masks
that allow one to put any planar improved lattice action on a parallel machine in an efficient
way. The generalized masking construction is given in Section V.

Nonplanar considerations encountered in nesting specific planar actions and actions in-
volving nonplanar loops have also been addressed. We hope that the methodology presented
will allow one to find an efficient parallel mask for any desired action. We are currently
testing our algorithms on some highly improved actions and will be reporting the results of
these studies [17] in the near future.



ALGORITHM FOR IMPROVED LATTICE ACTIONS 17

ACKNOWLEDGMENTS

This research was supported by the Australian Research Council and by grants of supercomputer time on the
CM-5 made available through the South Australian Centre for Parallel Computing. A.G.W. also acknowledges
support from the U.S. Department of Energy Contract DE-FG05-86ER40273 and by the Florida State University
Supercomputer Computations Research Institute, which is partially funded by the Department of Energy through
Contract DE-FC05-85ER2500.

REFERENCES

1. M. E. Peskin and D. V. Schroeder,An Introduction to Quantum Field Theory(Addison-Wesley, New York,
1995).

2. T. Muta, Foundations of quantum chromodynamics: An introduction to perturbative methods in gauge theories,
in World Scientific Lecture Notes in Physics, 5(World Scientific, Singapore, 1987).

3. H. J. Rothe,Lattice Gauge Theories: An Introduction(World Scientific, Singapore, 1992).

4. I. Montvay and G. Munster,Quantum Fields on a Lattice(Cambridge Univ. Press, Cambridge, UK, 1994).

5. D. Schutte, W. Zheng, and C. J. Hamer,Phys. Rev. D55, 2974 (1997) [hep-lat/9603026].

6. S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky,Phys. Rept.301, 299 (1998), [hep-ph/970547]; S. J. Brodsky,
G. McCartor, H.-C. Pauli, and S. S. Pinsky,Part. World3, 109 (1993); S. Glazek, A. Harindranath, S. Pinsky,
J. Shigemitsu, and Kenneth Wilson,Phys. Rev. D47, 1599 (1993).

7. C. D. Roberts and A. G. Williams,Prog. Part. Nucl. Phys.33, 477 (1994) [hep-ph/9403224].

8. Lattice 99,Nucl. Phys.(Proc. Suppl.)83, (2000).

9. G. P. Lepage and D. B. Mackenzie, On the viability of lattice perturbation theory,Phys. Rev. D48, 2250
(1993) [hep-lat/9209022].

10. G. P. Lepage, Redesigning lattice QCD, inPerturbative and Nonperturbative Aspects of Quantum Field
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