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Quantum field theories underlie all of our understanding of the fundamental forces
of nature. There are relatively few first-principles approaches to the study of quan-
tum field theories (such as quantum chromodynamics [QCD] relevant to the strong
interaction) apart from the perturbative (i.e., weak-coupling) regime. Currently, the
most commonly used method is the Monte Carlo method on a hypercubic space-time
lattice. These methods consume enormous computing power for large lattices, and it
is essential that increasingly efficient algorithms be developed to perform standard
tasks in these lattice calculations. Here we present a general algorithm for QCD that
allows one to put any planar improved gluonic lattice action onto a parallel comput-
ing architecture. High performance masks for specific actions (including nonplanar
actions) are also presented. These algorithms have been successfully employed by
us in a variety of lattice QCD calculations using improved lattice actions on a 128
node Thinking Machines CM-5. @ 2001 Academic Press

Key Words:quantum field theory; quantum chromodynamics; improved actions;
parallel computing algorithms.

I. INTRODUCTION

Itis almost universally accepted that quantum chromodynamics (QCD) is the underly
guantum field theory of the strong interaction [1, 2] that binds atomic nuclei and fuels 1
sun and the stars. Strongly interacting particles are referred to as hadrons, which incl
for example, protons and neutrons that make up atomic nuclei as well as a wide variet
particles produced in particle accelerators and from astrophysical sources. These hac
are made up of quarks and gluons, which are the underlying constituents in QCD.
guarks are spin+/R particles (i.e., fermions) and the gluons are massless spin-1 partic
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(i.e., gauge bosons). The quarks interact strongly through their “color” charge throu
the exchange of gluons. The eight gluons of SU(3) (i.e., one for each generator of SL
themselves carry color and hence interact with themselves and with the quarks. This is
essential difference between QCD and the corresponding theory of photons and elect
referred to as quantum electrodynamics (QED) and has far reaching consequences be
the theories have entirely different behavior.

The are very few first-principles methods for studying QCD in the nonperturbative lo
energy regime. The most widely used of these is the so-called Lagrangian-based lattice
theory, which formulates the field theory on a space—time lattice [3, 4]. An alternative latti
approach is based on the Hamiltonian formulation of quantum field theory and makes
of cluster decompositions, and again Monte Carlo methods to carry out the simulations
In addition, there are numerous studies based on a light-front formulation of QCD [6] a
much use has been made of Schwinger-Dyson equations [7] to assist with the construc
of QCD-based quark models.

The Lagrangian-based lattice technique simulates the functional integral using a fc
dimensional hypercubic Euclidean spacetime lattice together with Monte Carlo metht
for generating an ensemble of gluon field configurations with the appropriate Boltzme
distribution exg—Ss), whereS; is a discretized form of the QCD gluon action on the
hypercubic lattice. The simplest discretizations of the QCD action involve only near:
neighbors on the lattice and ha@a?) errors, wherea is the lattice spacing. Improved
actions represent a major advance for the field of lattice gauge theory, where by us
increasingly nonlocal discretizations of the QCD action, we can obtain the same accur
with far fewer lattice points and hence far less computational time and effort.

The purpose of the present work is to describe an algorithm which allows us to implem
an arbitrarily improved (i.e., arbitrarily nonlocal) action in an efficient way. For furthe
details on the state of the art lattice QCD techniques, see for example Ref. [8]. Anot
related and equally important advance is the technique of nonperturbative improvern
(e.g., mean-field improvement) which corrects for some of the major nonperturbat
effects (the so-called tadpole contributions) and hence more quickly brings the latt
results to their continuum form by improving the matching with perturbation theory at
given lattice spacin@ [9]. It is the combination of improved actions and nonperturbative
improvement that together have come to represent a significant advance for the f
[8, 10].

Lattice QCD is based on a Monte Carlo treatment of the path integral formulation, whi
makes it a computationally demanding method for calculating physical observables.
gluon field is represented by>3 3 complexSU(3) matrices, where there is one susbl(3)
matrix associated with every link on the lattice. The links lie only along one of the fot
Cartesian directions and join neighboring lattice sites. Since all lattice links require identi
numerical calculations, lattice gauge theory is ideally suited for parallel computers.

There are various types of improved actions and, as explained above, these are all b
on the idea of eliminating the discretization errors that occur when passing from continu
physics to the discretized lattice version. The simplest (i.e., nonimproved) gluon actior
the standard Wilsoraction and consists of & 1 Wilson loops or, as they are frequently
called,plaquettes(We shall often refer to the Wilson loops used to build up lattice action
as plaquettes.) The need to build the gluon action out of closed loops arises from the ne
maintain exacSU(3) gauge invariance in the discrete lattice action. This 1.loop action
was first proposed by Wilson [11] in the early 1970s and has been used extensively ovel
years. It consists of taking an arbitrary starting site ysayn the lattice and stepping around
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FIG.1. The 1x 1 plaquettdJs,(x) with base ak lying in the uv-plane. The lattice spacing is denotedeby

a 1x 1 loop until returning to the starting poirt The 1x 1 Wilson loop is illustrated in
Fig. 1.

Improving the standard Wilson action is achieved by making use of larger loops (e
1 x 2,2x 2, etc.) inthe lattice gluon action [12] to eliminate finite lattice spacing artifact
to a given order ira?. For an elegant and detailed discussion of these topics see Ref. [1

In this article we present an efficient and completely general algorithm that permits
to calculate any improved planar lattice action at any desired level of improvement.
“planar” here we mean that we will consider actions containing two-dimensional loops
arbitrary size which lie in any of the Cartesian planes, (i.e.xthg x-z, x-t, y-z, y—t,
or z-t plane). This algorithm has been used in a wide variety of improved action latti
simulations to date [8]. For example, it has been used in studies of the topological struc
of the QCD vacuum and the calibration of the various cooling and smearing techniques [
the study of discretization errors in the Landau gauge on the lattice [14], and studies of
static quark potential [15]. It is currently being used in studies of the gluon propagator [:
and highly improved actions [17].

In Section I, we briefly describe the tree-level improved action that we have been us
in our calculations [13—17] with our algorithm on a Thinking Machines CM-5. Section I
gives two possible ways of using the technique for the standard Wilson action. The forn
the algorithm appropriate for the first level of improvement (i.e., involving a combinatic
of the elementary squarexl1 plaquette and the rectangulax12 plaquette) is given in
Section IV. Then in Section V we present the general algorithm suitable for an arbitrau
nonlocal action, (i.e., for am x m Wilson loop withn and m being arbitrary positive
integers). Section VI addresses nonplanar issues encountered in nesting specific p
actions. Actions involving nonplanar loops are also addressed. Finally, in Section VII
present our summary and conclusions.

II. GAUGE ACTION, MASKING, AND PARALLEL COMPUTING

A. Lattice Gauge Action for Color S(3)

The standard Wilson action for the gluons is given by

=8> {1 - %Re Tr Ugg(X) )
sq
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and a simple tree-levéd(a?)-improved action (i.e., the action with the first level improve-
ment) is defined as

58 B
= qu ReTr(L = Usq(X) = 755 > ReTr (1= Urect(X)). )

0 rect

The 1x 1 square (or plaquett&)sy(x) and the 1x 2 rectangléJec(x) are defined by

Usg(X) = U, 00U, (X + UL (X + DU (x) ©)
Ureat(X) = U, ()OU, (X + Uy (X + D + U (X + 20U (X + D)U/ (x)
+ UL (OU (X + U, (X + 2DU (X + 2+ DU X+ DU 0. (4)

Here the variableg. and v are the direction in which the links are pointing inside the
lattice space. There are four directions for a four-dimensional hypercubic lattice. The |
productU,.«(X) denotes the rectangularl 2 plaquettes, ang is the tadpole improvement
factor, commonly known as the mean-field improvement factor which largely corrects 1
guantum renormalization of the links. In our numerical studies we have typically employ
the plaquette definition of the mean-field improvement factor

3

U = <;ReTr(Usq)> . (5)

For the improved action in Eqg. (2) the residual perturbative corrections after mean-fi
improvement are estimated to be of the order of two to three percent [18]. Of course, b
Egs. (1) and (2) reproduce the continuum gluon actioa as 0, wherep = 6/g? andg

is the QCD coupling constant at the scaldt is useful to note that oys = 6/g? differs
from the convention of Refs. [18—20]. A multiplication of ogrin Eq. (2) by a factor of
5/3 reproduces their definition.

Let us comment on the lattice configurations that we have generated with the gen
algorithm described here and that we have used extensively in Refs. [13-17]. The ga
configurations are generated using the Cabbibo—Marinari [21] pseudo-heat—bath algori
with three diagonab U, (2) subgroups. All calculations are performed using a highly paralle
code written in CM-Fortran and run on a Thinking Machines Corporations (TMC) CM-
with appropriate link partitioning. For the standard Wilson action, we partition the lin
variable in a checkerboard fashion. While all calculations to date have beSU@),
there is no restriction in the algorithm on the number of colors for the gauge group [21]
we could just as easily have treated the casBldfN).

The mean-field improvement factor was updated on a regular basis during the simulat
Once the lattice is thermalized from a cold start (after at least five thousand sweeps), th
factor is held fixed during the generation of the ensemble of gauge field configurations.
ensemble is built up by sampling the fields with a separation of at least 500 Monte Ce
sweeps over the entire lattice to ensure that they are sufficiently decorrelated. For the
of the standard Wilson action, configurations have been generated dna3Pdlattice at
B =5.70 and a 23 x 36 lattice at8 = 6.00. For the improved action of Eq. (2), we have
generated 8x 16, 12 x 24, 16 x 32, and 24 x 36 lattices withg values of 3.57, 4.10,
4.38, and 5.00, respectively.
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B. Masking and Parallel Computing

When performing a Monte Carlo sweep of the entire lattice, each lattice link must
updated individually using the particular gluon action of interest (&g), The action is
used in the Monte Carlo accept/reject step for that link in order that detailed balanc
ensured at each link update and hence that it is ensured throughout the entire lattice sv
Itis the combination of randomness in the link updates, the maintenance of detailed bala
and decorrelation (ensured by large sweep numbers between the taking of samples
ensures the desired ensemble of gauge field configurations are produced with the Boltzr
distribution exg—Sg).

In the most naive procedure we move through each link on the lattice consecutiv
updating them one at a time until we have completed a “sweep” through the entire latt
We then repeat these lattice sweeps as often as required. This simple procedure is h
inefficient on a parallel computing architecture, where we can be updating many links
the same time. However, there is a fundamental limitation to this parallelism, i.e., we v
violate detailed balance and corrupt our data if we try to simultaneously update a link wt
information about that link is being used in the update of another link. It is crucial that v
identify which links can be updated simultaneously; this is determined by the degree
nonlocality in the action. For example, for an action which contains only nearest neighl
interactions of the links, such as the Wilson action, we can use an efficient “checkerboe
algorithm, which will be described below. In general, the more nonlocal the lattice glu
action, the fewer the links that can be simultaneously updated. We see that the improvel
program is therefore more expensive to implement, but the benefit of improved actions
outweighs this drawback.

In order to facilitate our discussions we will refer to the concept of “masking,” where tt
lattice links not eliminated by the mask are the ones that can be simultaneously updatec
parallel computing environment. The number of independent masks needed for a partic
action determines an upper limit to the parallelism that can be used in a single lattice sw
As we will see, the best that can be done is to have two masks per link direction, and
is for the case of nearest neighbor interactions only.

We will simplify the presentation in the usual way by rescaling all dimensionful quantitie
by the lattice spacing. This is equivalent to setting = 1.

IIl. MASKING FOR THE STANDARD WILSON ACTION

In the standard Wilson action, where only neighboring links are connected by the act
we need only two masks for each of the four link directions. There are two different wa
of implementing this masking, as we will now discuss.

A. Checkerboard Masking

The standard Wilson action only involves<11 Wilson loops (depicted in Fig. 1) and is
the most fundamental lattice gluonic action. Whenever a given link is being updated,
must not be attempting to update any of the links within any of thkellplaquettes which
contains the given link. Consider the link from the lattice gite x + u, whereu is one of
the four Cartesian unit vectogs ¥, z, orf. We see then that the plaquette in Fig. 1 forms
“staple” consisting of three links in the—v plane which is attached to the link of interest
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FIG. 2. Checkerboard masking as seen irkaty plane of the lattice when using the standard Wilson action.
The highlighted links with arrows can be updated simultaneously.

U, (x). (Note that we are sometimes usirgas a shorthand notation for the space—time
lattice pointx* = (X, Y, z,t) as well as for thex-coordinate on th& axis. The meaning
should be clear from the context.) We could equally well consider the plaquette and stz
below the linkU, (x) in the figure, which also lies in the—v plane. In addition, for a given
Cartesian directiop, there are three possible choicesifor.e., there are three orthogonal
planes which contain the link and two staples per plane.

Let us consider, for example, all of the links in tkey plane which are oriented in the
direction. We can see from Fig. 2 that we can choose a “checkerboard” of such links that
be updated at the same time without interfering with each other. These links are indice
in the figure as highlighted links with arrows. It is easy to see that none of the links to
updated lie in any of the staples for the other links to be updated and that exactly half of
X-oriented links in this plane can be simultaneously updated at one time.

We have identified one of the lattice sites in Fig. 2 as thexsitethe link variableUg (x)
is to updated then from Fig. 2, it is observed that the link variables ik tilieection that
can be simultaneously updated &ig(x + 2X), Ug(x + 4X) and so on. So every second
link along thex direction can be updated at the same time. Now let us consider stepping
the § direction. We again see that every second link in that direction can be simultaneot
updated. By symmetry the same must also be true foz #radi directions as depicted in
Fig. 3, where we have used a broken dash—dot line to try to indicate the fourth dimens
(i.e., for the links that lie in th&—{ plane). We see that for the link pointing in tike
rotations about the link. Thus we see that we have now built up a four-dimensional m
for determining which links pointing in thg direction can be simultaneously updated.

Let us introduce some convenient shorthand notation. If for a given link pointing in tl
direction ., we must taken steps in the directiom before reaching the next updatable
link pointing in the direction., we will use the notatiom: v ~ nv. For our checkerboard
masking we see that for a link pointing in the directiowe have to take two steps in each
of the Cartesian directions before reaching the next updatable link. Hence we write

KK~2%, §~29, 2~2z and f~ 2f. (6)
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FIG. 3. Rotating the 1x 1 plaquette sitting in th&y plane about th&-axis into thex—2 and%— planes.

We immediately see that this is also true for links oriented injthe andt directions so
that

g x~2% §~29, 2~22 and f~ 2, @)
2: K ~2%, 9~29, 2~22 and -~ 2, 8)
f:%R~2%, §~29, 2~22 and f~ 2 )

Finally, note that when we wish to update all of the links pointing in any one of the fol
Cartesian directions, say, we need only two four-dimensional masks. This is becaus
exactly half of theu-oriented links across the entire lattice are considered in each fot
dimensional mask. To appreciate this we simply note that for any one of the Cartes
directions one mask can be turned into the checkerboard complement mask for that dire
by shifting the mask by one step in any Cartesian direction (see Fig. 2). So to update
of the links on the lattice we need a total of eight four-dimensional masks, i.e., two ma
for each of the four Cartesian directions. In other words, no matter how many nodes
have available on our parallel computing architecture, a full lattice updating sweep v
require eight serial masked sweeps to complete with a nearest neighbor action (suc
the Wilson action) and checkerboard masking. This is the conventional procedure for
standard Wilson action in lattice QCD studies. In closing this section on the standard Wil
action, let us observe in Section Il B that there is an alternative and equally good “line
masking for this case.

B. Linear Masking

As an alternative approach to the checker board masking described in Section Il A,
could partition the links over the lattice in a linear fashion as shown in Fig. 4. If the lir
variable of interest it (x) then the next possible link variable in tRelirection which can
be updated is thEg(x + X) link, then theUg (x 4 2X), and so on. We see that all the links
on theX line can be updated at the same time, since none of these links are containe
the 1x 1 plaquettes for the other links in the line. Hence we have~ 1X. Now looking
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et
E=d

FIG. 4. Linear masking of the lattice when using standard Wilson action. The highlighted arrows represe
the link variable that can be updated simultaneously.

in the y direction, we realize that we cannot touch thgx + ¥) link because it is part of
the Wilson loop containing the link variablgx (x) which is being updated simultaneously.
However, the linkdJs (x + 29), Uz (X 4+ 4¥), and so on can be updated. Consequently, wi
haveX: § ~ 2§ and similarly for steps in th2andt directions. For a link variable pointing
in the X direction, we then have

X

K~ 1R, §~29, 2~22 and f~ 2 (10)

When the links to be updated are pointing in the other three directions we have

g% ~2%, §~1y, 2~22 and f~ 2, (11)
2: R~2%, §~29, 2~12 and T~ 2i, (12)
f: R~2% §~29, 2~22 and f~ 1i, (13)

for the ¢, 2, andt directions, respectively.

Again, we see that there are two complementary linear masks for links pointing in a
given Cartesian direction. One mask can be obtained from the other by a shift of one ste
in any of the three Cartesian directions orthogonal tas can be appreciated from Fig. 4.
Thus this linear masking is equally as efficient as the checkerboard masking of the prev
section, since there are two masks for each of the four Cartesian directions giving a totz
eight masks.

IV. MASKING AN IMPROVED ACTION

In this section, we describe the necessary masking procedure for a first-level impro
action involving 1x 1 and 1x 2 Wilson loops. In patrticular, in this section we are describ-
ing the masking suitable for the improved gauge action of Eq. (2), which has been u
extensively by us [13-17]. Let us again begin by considering the link variable beginni
at some lattice sit& and pointing in thek direction, i.e. U (X). We now need to consider
both Fig. 3 for the elementaryst 1 square plaquette and Fig. 5 for thex 2 rectangular



ALGORITHM FOR IMPROVED LATTICE ACTIONS 9

O ¥ol
Cmm =)

L | .’- .'ﬂ

Q_ j! : ;—4 5 O‘ @ Q
o270 O == =G ===
’ o F et

1 K3 | 7 vl (I

.’ " | 1.2

[ +

i e Al 8 7 Ot e i ;
o / @_C!—/—--C?I . O':"'—';—"'Or""“-"'c" !
—0 O & P S - O S &

FIG. 5. The set of all possible ¥ 2 plaquettes containing the linly (x). The dashed-dotted line is to be
understood as being in tikef plane.

plaquette. In Fig. 5 we show all of thex1 2 rectangular plaquettes which contain the link
Ux (x), which is shown as the highlighted horizontal link in the three parts of this figur
Visualizing a four-dimensional object on a flat piece of paper can be, to a certain extent
artistic challenge, and so we have again used a dash—dot line to indicate links lying in
%—f plane. There are three distinguishable ways to include this link in 2 plaquette (the
three parts of the figure) and for each of these there are two (mirror-image) rectangles
Cartesian plane and four Cartesian planes. All links in Figs. 3 and 5 and with arrows (ot
than the linkUs (x) itself) must be omitted from the mask when updating this link with ou
improved action. We see that there are many excluded links.

In Fig. 6 we show which links can be simultaneously updated with theUigx). We
can immediately write down by inspection from this figure that

RK~2%, §~39, 2~32 and i~ 3i. (14)

This follows since th& andt cases are identical to tHecase for thisk-oriented link.
The generalization to the other orientations of the links to be updated is straightforwarc

A
X

FIG. 6. The highlighted links with arrows are the ones that can be simultaneously updated for an act
containing both Ix 1 and 1x 2 plaquettes.
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symmetry:
9: X~3%, §~29, 2~32 and f~ 3, (15)
2: x~3%, §~39, 2~22 and f~ 3 (16)
f: R~3% §~39, 2~32 and {~ 2. 17)

Let us return to the particular case of the maskingfariented links. From Eq. (14) we
see that there is symmetry between $hé, andt directions, and so we will begin by con-
structing suitable masks for any given equdiyper-plane, i.e., for the three-dimensional
space spanned by the unit vect§r, andf.

Before attempting this, let us first consider Fig. 6 and extend this to three dimensic
by imagining that the-axis is pointing directly out from the page. We shall temporarily
neglect thd direction, which is equivalent to simply taking a slice of the four-dimensione
lattice with the same value of (i.e., an equat-hyper-plane). Now let us view this three-
dimensional lattice by looking along theaxis at one particular equalplane. We will
then be presented with end-views of updatable links irjtHeplane. For every fixed value
of zthere are three different masks neededyfand vice versa. Also, there is no restriction
on simultaneously updatimrdjagonallyshifted links, since we are only considering planar
actions at this point. It is not difficult to see that we can cover all of the nine lattice links th
need to be updated with three orthogonal masks as shown in Fig. 7. In this kepriented
links which can be updated at the same time are indicated by a solid dot. Note that eac
these masks is related by a diagonal shift of the nine-point lattice “window.”

We can now also extend this thinking to include thdirection, by stacking the three
two-dimensionaly—z masks on top of each other as shown in Fig. 8. We must stack tl
planes so that when viewed along any of the three axes the solid dots in any one Carte
plane always have the appearance of one of the planes in Fig. 7. We see that this ce
achieved in three ways by the stacking in Fig. 8 and its two cyclic permutations. These tt
three-dimensional masks when summed give the identity (i.e., the sum includes all poi
and are orthogonal to each other (i.e., the sum includes all points only once).

We can now give a simple geometrical picture of what we are doing, which will simplif
the generalization that we give in the next section.¥foriented links, the directior, 2,
andf directions are all symmetrical and each direction requires a step of 3 to reach the r

Plane 1. Plane 2. Plane 3.
y+2,z+1
y+2 ®
A
y y+1
V.Z 7+1 z+2
A
Z

FIG. 7. Schematic illustration of the lattice masking when using the 2 plaquette improved action.
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FIG. 8. lllustration of the cyclic plane rotation in the improved masking.

updatable link. Hence, we need to construct a complete set of orthogonal masks in t
dimensions for a % 3 x 3 cube, where no two points in the cube lie on the same Cartesi
axis (i.e., only diagonally related points). This is simple to do. Let us consider the bott
plane (i.e., plane 1) of Fig. 8 and connect the three solid dots by a diagonal line. We see
plane 2 is obtained from plane 1 by a diagonal shift of this line by one diagonal half-st
and similarly for plane 3. In visualizing this it may help to imagine surrounding the cut
by many identical copies of itself and moving the diagonal line through diagonal half-ste
across all of these cubes simultaneously. All three three-dimensional masks are obtain
the same way but start with plane 1, plane 2, and plane 3, respectively.

So for thex-oriented links we need three masks for each eguaiper-plane (i.e., athree-
volume here), and we have two independent equalper-planes, giving a total of six masks
for each Cartesian direction for the link orientation. Since there are four orientations, tl
a total of 24 masks are needed for an action containing bettl land 1x 2 plaquettes.
Thus a single lattice sweep must take at least 24 sequential serial calculations, even o
most parallel computing architecture.

The masking procedure outlined here for this action can only be implemented when
number of lattice points in each dimension is a multiple of 3. Inspection of Fig. 8 reve:
the periodicity of three is required to maintain separation of links at the boundary. Sir
simulations are usually carried out on lattices with even numbered sides, this restricts
length of the lattice sides to multiples of 6. Fortunately, multiples of 4 are easily obtain
as described in the next section. Moreover, Section VI reports a high-performance masl
this action with a periodicity of 4.

Itis interesting to note that when implementing this masking procedure on the CM-5
achieved optimum performance by calculating the updates for all links on the lattice anc
then only implementing those updates that were appropriate for the particular mask be
used at the time. In other words, for the lattices that we have studied so far on the CN
it was more efficient to calculate link updates that were never used, than it was to split
masked links over the various processor nodes and update only these masked links.
was due to the fact that there was a large overhead of communication time in assigning
masked links across the processors. The point of this observation is that the optimal uc
the masks will in general depend on the details of the parallel computing architecture be
used.



12 BONNET, LEINWEBER, AND WILLIAMS

V. MASKING THE LATTICE WHEN USING A GENERALIZED IMPROVED ACTION

We can now generalize the algorithm presented in Section IV for arbitrarily improve
planar actions. Let us begin as before by considering the update of links orientedkin th
direction. Let us assume that we have an action withm links where then refers to the
% direction and then refers to they, 2, andt directions. We will eventually argue that only
thenmax X Nmax Case, wher@nax is the greater ot andm, is necessary in the general case.
As shown in Fig. 9, the nearest simultaneously updatable links are separatesidps in
the X direction andm + 1) steps in the other three Cartesian directions.

Hence we see that we can write in our notation for the four Cartesian orientations of
links that

R: K~nk, 9Y~mMm+1y, z~m+12 and f~m+ D, (18)
g: K~mMm+DX, §~ny, z~m+12z and f~ m+ D, (19)
2: R~M+DX, §~m+1y, z~nz and f~m+ D, (20)
f: R~M+DX, §~mM+1Y, 2~ m+12z and f~ni. (21)

We can now follow the arguments of the previous section. Let us consider axfixec
hyper-plane (i.e., three-volume). In place of & 3 three-volume we will now need an
(Mm+1) x (m+1) x (m+ 1) three-volume. Furthermore, we will need a complete se
of orthogonal and diagonal masks for this. Let us again look along tieection at a
fixedt plane for now, i.e., we are looking atie-z plane as in Fig. 10. Let us refer to the
(m+ 1) x (m+ 1) two-dimensional plane with the updatable links (solid dots) along th
diagonal as plane 1. Then we can generate the atl@o-dimensional planes by diagonal
half-shifts as before as depicted in Figs. 11 and 12. We can then sequentially stack tt
planes in thd direction as before to form the first of the three-dimensional masks. Tt

X, y+m+l
[ r P {F APl
H X,y+m
g A ] ]
m steps ifi ¥
Ot
4 o |
x=(X,y,z.t) X+,
A
A
y
— T — . A
i n steps in x

FIG. 9. The highlighted links with arrows are the ones that can be simultaneously updated for an act
containing up t;m x m plaquettes, where hengrefers to thex direction andn applies to the other three Cartesian
directions.
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..... ° y+m

Ay
/ / y+m-2
. -/ / < y+m-3
./ / y+2
./ / y+1
/ e y

X.y.Z X,y,z+m-3 X,y,Z+m

z z+1 z+2 z+3 z+m-3 z+m-2 z+m-1 z+m

Plane 1. -

FIG. 10. Plane 1 with thgm + 1) updatable sites on the main diagonal of {h€ plane.

other m three-dimensional masks are then generated from this first mask by the cy
permutations of then + 1 planes as in Section IV. Hence we have generated the desir
complete set ofm + 1) orthogonal three-dimensional diagonal masks.

So for each fixedk-hyper-plane (i.e., three volume) we neg@d + 1) masks. We will
need such a set of masks for thevalues ofx. The general result is that for updating
the links oriented in th& direction we need a total of x (m + 1) masks, and we have
seen that the construction of these masks is straightforward. The construction of the m
for the other Cartesian orientations of the links proceeds identically. This total number
masks isnmask= 4 x n x (m+ 1). The periodicity of the mask is governed by the last
factor,(m + 1), and the lengths of the lattice dimensions must be a multiple of this numb
The reason is that if this were not the case, then the imposition of the necessary peri
boundary conditions would cause link collisions, where a link being updated uses ont
more other links which are simultaneously being updated.

Any improved lattice action of physical interest must be bagsymmetric (i.e., sym-
metric under the arbitrary interchange of the four Cartesian directions) and translation
invariant. Thus for such actions, every link will find itself occurring in every possible pc
sition for every plaquette in the improved action. We then see, as we did in Section
and Fig. 5, that the number of steps needed in each direction is determined by the lor
plaquette side appearing in the action. Let us denote the longest plaquette side appe
in the action a®max Then we see that the number of steps needed in the various Cartes

° y+m

ya ) o Lo
./ / y+m-2
: e/ / - < y+tm-3

/ o y+'2y+3
Ny o
VA, ;

X.y.Z X,y,z+m-3 X,y,Z+m

Plane 2. -

z z+1 z+2 z+3 z+m-3 z+m-2 z+m-1 z+m

FIG.11. Plane 2.
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y+m

v "
/ / y+m-2
./ - / y+m-3

Plane 3.
S y+3
y+2
./ y+1
X.y.Z X,y,z+m-3 X,y,Z+m
z z+1 z+2 +3 ‘z+m3 z+m2 z+m-l z+m

FIG. 12. Plane 3.

directions is given by

X~ r]max)’z, 9 ~ (Nmax + 1)9, z~ (Nmax + 1)27 and f~ (Nmax + l)f, (22)

»

X~ (Mmax+ DX, ¥~ Nmaxy, Z~ (Mmax+ 12, and &~ (nmax+ DE,  (23)

<
X

N>
x>

~ (Nmax + 1)& 9 ~ (Nmax + 1)9» Z~nNmaxZ, and f~ (Nmax + 1)f, (24)

f: X ~ (Nmax+ DX, Y~ (Mmax+ 1Y, Z~ ("max+ 12, and f ~ Nmaxt. (25)
Hence the number of masks in general for an improved action will then be given by
Nmask= 4 X Nmax X (Nmax+ 1), (26)

and the lattice will need the length in each dimension to be an integral multiplggf+ 1).

It is useful to note that thénear masking for the standard Wilson action is the one
that is extended initially in Section IV and is subsequently generalized in this sectic
For the standard Wilson action (i.e.,x11 plaquettes only), we see that.x = 1 and
hencenmask= 4 x 1 x 2 = 8 as we found for the linear (and checkerboard) mask. For th
improved action that we have studied (i.ex 1l and 1x 2 plaquettes) we haugnx = 2
and hencamask= 4 x 2 x 3 = 24 or 6 masks per link direction as found in Section IV.
However, this way of proceeding for the plaquette plus rectangle improved action wot
require each lattice dimension be a multiplgiof,ox + 1) = 3. But since we also typically
want our lattices to have even lengths, then each side of the lattice must be a mult
of 6 in length. Since the result in Eq. (26) is a lower bound, we can of course alwa
choose to enlarge the period of our masking by choosing + 2 for the last factor in
Eq. 26 rather thannax + 1. This will still ensure that no link collisions occur. For example,
for the plaquette plus rectangle improved action, we can(nggx+ 2) = 4 instead of
(nmax+ 1) = 3 in EqQ. (26), so that any lattice lengths which are multiples of 4 becon
available at the cost of requiring 32 masks rather than 24. Fortunately, for this case a n
efficient mask can be realized and will be presented in the next section.

VI. NONPLANAR CONSIDERATIONS

We have presented a method for identifying links which may be simultaneously upda
during Monte Carlo updates or cooling sweeps. The generality of the algorithm allows c
to parallelize link updates for planar actions of any degree of nonlocality. In this section
extend this analysis to a few special cases of actions in which out-of-plane considerati
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o & )
: x+1,y42 ]

e ' Q

FIG. 13. Two elementary cells for an action involving<l1 and 1x 2 Wilson loops are nested together such
that one need not restrict the mask to every second link in the direction of the links being updated. The links
the positions labeled are the ones that can be simultaneously updated. The out of plane plaguette-plus-rec
illustrates additional links that cannot be simultaneously updated.

are necessary. Both cases are centered around the plaquette plus rectangle action of E
inwhich 1 x 1 and 1x 2 Wilson loops are considered in the action. Such actions domina
current improved gauge action analyses.

In Section IV we illustrated how such an action can be masked through the considera
of an elementary & 3 x 3 cube in which one-third of the links may be simultaneously
updated. However, only every second link in the direction of the links is updated simul
neously, as illustrated in Fig. 6. Hence six masks per link direction are required.

Here we consider an alternative masking specialized to thd And 1x 2 Wilson loop
actions. Figure 13 illustrates the manner in which these Wilson loops may be nested, ¢
that one need not restrict the mask to every second link in the direction of the links be
updated. This technique will reduce the number of masks by a factor of two, at the expe
of considering an elementary>44 x 4 cube in which one-quarter of the links may be
simultaneously updated. Figure 14 displays the four planes to be cycled through in wi
the links to be updated simultaneously are indicated by the solid dot. Hence only four me
per link direction are required. Moreover, the lattice dimensions (usually even numbe
can now be multiples of 4 as opposed to 6.

The out-of-plane considerations required for the nested action are also indicated in Fig
Hence it becomes apparent that not only must the three links st+ 1), (X, y + 2), and
(X, y + 3) be avoided, but also the links two-steps in a direction orthogonal to the lir
direction and one step in a third direction (similar to moves of a Knight on a chess boa
must be avoided.

Inspection of the four planes to be cycled through in the elementary & 4 cube dis-
played in Fig. 14 indicates that such Knight moves are already avoided in this mask. H
ever, italso becomes clear that the ordering of the planes is crucial. For example, interch
ing the positions of planes 2 and 3 would cause “link collisions” within the nested mask

Finally, we consider nonplanar actions in which one step out of the plane oftHednd
1 x 2 Wilson loops is required. Such nonplanar paths are introduced to eliminate small
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Xy+3.2+2,143
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t 1 :'g
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FIG. 14. The four planes to be cycled through in the elementary4x 4 cube. One-quarter of the links
may be updated simultaneously and are indicated by the solid dot. The circled sites are an example of the
surviving when the out of plane “chair” or “parallelogram” link paths are included in the action.

finite O(g?a?) errors, whereg is the gauge coupling constant. The six-link paths commonl
referred to as the “chair” and “parallelogram” [18] introduce a link parallel to that bein
updated which is one-step orthogonal to the link direction and one step in a third directi

Inspection of Fig. 14 indicates that such 1 by 1 moves eliminates fully two of the fo
planes and half of the parallel sites on each surviving plane. An example of four of the si
which may still be updated in parallel are indicated by the circled sites in Fig. 14. As ares
there are now 16 masks required per link direction instead of 4. Now a total of 64 mask
required for this action, which is still regarded as rather local.

The introduction of even the most local nonplanar paths can have a serious detrime
effect on the level of parallelism that is possible. It is easy to see that one can rapi
eliminate all sites in an elementaryx n x n cube with nonplanar loops, leading nd
masks per link direction.

VII. SUMMARY AND CONCLUSION

We have briefly described the concept of improved actions and have explained the im
cations of the nonlocality arising from the improvement program for the implementation
these actions on parallel computing architectures. We have characterized these implica
in terms of the number of masks, which in turn determine the minimum number of ser
calculations needed to perform a Monte Carlo updating sweep over all of the gluon lir
on the lattice. We have systematically built up a completely general algorithm using ma
that allow one to put any planar improved lattice action on a parallel machine in an effici
way. The generalized masking construction is given in Section V.

Nonplanar considerations encountered in nesting specific planar actions and action
volving nonplanar loops have also been addressed. We hope that the methodology pres!
will allow one to find an efficient parallel mask for any desired action. We are current
testing our algorithms on some highly improved actions and will be reporting the results
these studies [17] in the near future.
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